

+1/1/60+

September 2018

Mathematics MCQ Physics, Mechanical Engineering & Electrical Engineering Tracks

Duration: 1 hour

Scoring scale: 2 for a correct answer, 0 if no answer is given, -1 for a wrong answer

For some questions, you have to fill several good answers.

A standard -non scientific- language dictionary is authorized. Please make sure to have it checked by the staff. Documents, electronic devices and calculators are not allowed.

Notations

 \mathbb{R} is the set of real numbers, \mathbb{C} is the set of complex numbers. For $a, b \in \mathbb{R}$,

- $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}, (a,b) = \{x \in \mathbb{R} : a < x < b\},\$
- $[a, b) = \{x \in \mathbb{R} : a \le x < b\}, (a, b] = \{x \in \mathbb{R} : a < x \le b\},\$
- $\mathcal{M}_n(\mathbf{K})$ is the set of square matrices of order *n* on the field K.

Question 1 Let X, Y be two sets and let $f : X \to Y$ be a function. Then, for all subsets B₁ and B₂ of Y, $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.

A False

B True

Question 2 Let E, F be 2 \mathbb{R} -vector spaces of finite dimension, dim(E) = n, dim(F) = p. Let f be a linear map from E to F. Then

- A $\operatorname{rank}(f) = n + \dim(\operatorname{Ker}(f))$
- $\boxed{B} p = \dim(\operatorname{Ker}(f)) + \operatorname{rank}(f)$
- $\boxed{C} \dim(\operatorname{Ker}(f)) = p + \operatorname{rank}(f)$
- $D \quad n = \dim(\operatorname{Ker}(f)) + \operatorname{rank}(f)$

Question 3 Any square real matrix which is symmetric is diagonalizable and has only real eigenvalues.

A True

B False

Question 4 The matrix $J = (1)_{1 \le i, j \le n}$, $n \ge 2$

A is diagonalizable

B counts 1 in its eigenvalues

C of rank 1

D is invertible

Question 5Does the series $\sum_{n \ge 2} \frac{1}{n(\ln n)^2}$ converge?ANoBYes

Γ					

Question 6 Let $f : x \in \mathbb{R} \mapsto \log\left(\frac{1}{\exp(-x) + 1}\right)$. Then	
$\boxed{A} \lim_{x \to +\infty} f(x) = 0$	$\boxed{C} \lim_{x \to +\infty} f(x) = -\infty$
B $\lim_{x \to +\infty} f(x)$ does not exist	$\boxed{D} \lim_{x \to +\infty} f(x) = +\infty$
Question 7 \mathbb{Q} is countable.	
A False	B True
Question 8 \mathbb{R} is countable.	
A False	B True

Question 9 Recall that \subsetneq denotes: "subset of and not equal to". Let E be a set, A a subset of E and $(B_i)_{i \in I}$ a collection of subsets of E, indexed by an unspecified set I. Then

 $\begin{array}{|c|c|} \hline A & \bigcup_{i \in I} (A \cap B_i) \subsetneq A \cap (\bigcup_{i \in I} B_i) \\ \hline B & A \cap (\bigcup_{i \in I} B_i) \subsetneq \bigcup_{i \in I} (A \cap B_i) \\ \hline C & A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i) \\ \end{array}$

Question 10 For $(x, y) \in \mathbb{R}^2$, we define $f(x, y) = (\sin(x) + \sin(y), (x + y)/(x^2 + y^2))$. Then *f* is

A bounded on \mathbb{R}^2

B continuous over \mathbb{R}^2

C symmetric

Question 11 Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two real sequences which converge to l_1 and l_2 respectively. If for all $n \in \mathbb{N}$, $u_n < v_n$ then

 $\begin{array}{|c|c|c|c|}\hline A & l_1 < l_2 \\\hline B & l_1 = l_2 \\\hline C & l_1 \le l_2 \end{array}$

Question 12 Let X be a random variable with nonnegative integer values. It is said that X follows a geometric law if

A there exists a real number $\lambda > 0$ such that $\forall k \in \mathbb{N}$, $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.

B there exists a real number $p \in (0, 1)$ such that $\forall k \in \mathbb{N}$, $\mathbb{P}(X = k) = (1 - p)^k p$.

C there exists a real number $p \in (0, 1)$ such that $\forall k \in \mathbb{N}$, $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Question 13 The set $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right]$ is equal to

A (0,1] B [0,1]

Question 14 Let A be a matrix in $\mathcal{M}_5(\mathbb{R})$. For all B, C $\in \mathcal{M}_5(\mathbb{R})$, we have $(AB = AC) \Rightarrow (B = C)$.

A False

B True

-	 		 		 	

+1/3/58+

Question 15 Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence. Which of the following statements are true ?

- A If $\frac{u_n}{1+u_n^2} \to 0$ then u_n converges to 0, as $n \to \infty$
- B If $\lim_{n \to \infty} u_n = \ell$ then $u_{n+1} u_n$ converges to 0, as $n \to \infty$

C The sequence $(v_n)_{n \in \mathbb{N}}$ defined by $v_n = \frac{u_n}{1 + u_n^4}$ is bounded

- D If $u_{n+1} u_n$ converges to 0 then $(u_n)_{n \in \mathbb{N}}$ converges
- $\boxed{\text{E}} \text{ If } \frac{u_{n+1}}{u_n} \to 1 \text{ then } (u_n)_{n \in \mathbb{N}} \text{ converges}$

 Question 16
 Let $f: x \in (-1, 1) \mapsto \frac{e^x - 1}{(x+1)^2 - 1}$. Then

 A
 $\lim_{x \to 0} f(x) = 1/2$ C
 $\lim_{x \to 0} f(x) = +\infty$

 B
 $\lim_{x \to 0} f(x) = 0$ D
 $\lim_{x \to 0} f(x) = 2$

Question 17 For all $x \in [0, \pi/2]$, $\sin(x) \ge 2x/\pi$.

A False B True

Question 18 Let $F : \mathbb{R} \to \mathbb{R}^2$ be a function defined by $F(t) = G(2t+1, e^t)$ where $G : \mathbb{R}^2 \to \mathbb{R}$ is defined by $G(x, y) = x^2 + y$. What is the expression of F'(t) for $t \in \mathbb{R}$?

 A
 $2(2t+1) + e^t$ C
 $4(2t+1) + e^t$

 B
 $2 + e^t$ $2 + e^t$ $2 + e^t$

Question 19 Let *f* be a continuous function on \mathbb{R} such that $\int_0^{+\infty} f(x) dx$ is convergent. Then we have necessarily $f(x) \to 0$, as $x \to +\infty$.

A False

Question 20 The set of functions $(x \mapsto \sin(n\pi x))_{n \ge 1}$ is an orthonormal collection for the scalar product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$. [A] True [B] False

Question 21 The function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \frac{xy}{\sin x}$ if $x \neq k\pi$ and $f(k\pi, y) = y$, for $k \in \mathbb{Z}$, is continuous at (0, 0).

A False

B True

B True

Question 22 The problem

$$\begin{cases} -u' = 1 & \text{in }]0,1[, \\ u(0) = 0 & \text{and } u'(1) = 0. \end{cases}$$

has

A a unique solution $x \mapsto x(2-x)/2$

B no solution

C several solutions

		+1/4/57+
Question 23	The matrix $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ is symmetric and	positive definite.
A True B False		
Question 24	Let $\mathscr{B} = (e_1, e_2, e_3, e_4)$ be a basis of \mathbb{R} $\begin{pmatrix} 0 & 0 & 0 & -1 \end{pmatrix}$	⁴ . Let <i>f</i> be the endomorphism of \mathbb{R}^4 whose matrix
related to the b	pasis \mathscr{B} is: $\begin{pmatrix} 0 & -1 & 1 & 0 \\ -1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Is t	he map f bijective?
A No		B Yes
Question 25 that there exist Which of the fo	Let E and F two vector spaces. Consists an endomorphism h of E which satisfy oblighted statistical statisticae statisticae statisticae statisticae	der two linear mappings f and g from E to F such sfies $g = f \circ h$.
	nf erg	
Question 26 Is ℱ linear?	Let $\mathscr{F}: \mathbb{R}^2 \to \mathbb{R}^3$ be a function defined	d by $\mathscr{F}(x, y) = (2x + y, x - y, x - y)$
A Yes		B No
Question 27	Let F be s vector subspace of a vector	space E. Then, $\forall (x, y) \notin F^2$, $x + y \notin F$.
A True		B False
Question 28	The inverse of a lower triangular inve	rtible matrix is upper triangular.
A True		B False
Question 29 $ h^2u''(x) - (u(x)) = (u(x))$	Let $u \in C^4([0,1]), h$ $(x+h) - 2u(x) + u(x-h)) \le \frac{h^4}{12} \max_{x \in [0]} \frac{h^4}{12} \max_{x$	\in (0,1) and $x \in (h, 1 - h)$. Then $ u^{(4)}(x) $.
A True		B False
Question 30 The matrix of <i>j</i>	Let f be an endomorphism of \mathbb{R}^2 such that f in the basis $((0, 1), (-1, 1))$ is :	h that $f((0,1)) = (-1,1)$ and $f((-1,1)) = (-1,0)$.
$\begin{bmatrix} A \\ 2 \end{bmatrix} \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix}$		$\boxed{C} \left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right)$

 $\begin{array}{ccc}
 A & \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix} \\
 B & \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}
\end{array}$

+1/5/56+

September 2018

Mathematics MCQ

Physics, Mechanical Engineering & Electrical Engineering Track

0	1 2 3 4	5 6 7 8 9
0	1 2 3 4	5 6 7 8 9
0	1 2 3 4	5 6 7 8 9
0	1 2 3 4	5 6 7 8 9
0	1234	5 6 7 8 9

← Encode your inscription number on the left, and write your name and first name in the field below.

.....

Name and first name:

Answers must be given exclusively on this sheet: answers given on the other sheets will be ignored.

WARNING: the boxes must be completely <u>filled</u>, not checked, otherwise your answers might not be taken into account.

EXAMPLE:

Fill the box : Question 16 : 🛆 📕 OK

Question 23: A M NO!

ANSWERS:

QUESTION 1 : \overline{A} \overline{B}	QUESTION
QUESTION 2: \overline{A} \overline{B} \overline{C} \overline{D}	QUESTION
QUESTION 3 : \overline{A} \overline{B}	QUESTION
QUESTION 4: A B C D	QUESTION
QUESTION 5: \overline{A} \overline{B}	QUESTION
QUESTION 6 : $A B C D$	QUESTION
QUESTION 7: \overline{A} \overline{B}	QUESTION
QUESTION 8: $\overline{\mathbf{A}}$ $\overline{\mathbf{B}}$	QUESTION
QUESTION 9: \overline{A} \overline{B} \overline{C}	QUESTION
QUESTION 10: \overline{A} \overline{B} \overline{C}	QUESTION
QUESTION 11: \overline{A} \overline{B} \overline{C}	QUESTION
QUESTION 12: \overline{A} \overline{B} \overline{C}	QUESTION
QUESTION 13: \overline{A} \overline{B}	QUESTION
QUESTION 14 : \overline{A} \overline{B}	QUESTION
QUESTION 15: A B C D E	QUESTION

QUESTION 16: A B C D
QUESTION 17: A B
QUESTION 18: A B C
QUESTION 19: A B
QUESTION 20: A B
QUESTION 21: A B
QUESTION 22: $A B C$
QUESTION 23: A B
QUESTION 24 : $A B$
QUESTION 25: A B C D
QUESTION 26: \overline{A} \overline{B}
QUESTION 27: $A B$
QUESTION 28: \overline{A} \overline{B}
QUESTION 29: A B
QUESTION 30: $A B C$

+1/6/55+